Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The extraordinary 2021 September–October outburst of Centaur 29P/Schwassmann–Wachmann 1 afforded an opportunity to test the composition of primitive Kuiper disk material at high sensitivity. We conducted nearly simultaneous multiwavelength spectroscopic observations of 29P/Schwassmann–Wachmann 1 using iSHELL at the NASA Infrared Telescope Facility (IRTF) and nFLASH at the Atacama Pathfinder EXperiment (APEX) on 2021 October 6, with follow-up APEX/nFLASH observations on 2021 October 7 and 2022 April 3. This coordinated campaign between near-infrared and radio wavelengths enabled us to sample molecular emission from a wealth of coma molecules and to perform measurements that cannot be accomplished at either wavelength alone. We securely detected CO emission on all dates with both facilities, including velocity-resolved spectra of the CO (J= 2–1) transition with APEX/nFLASH and multiple CO (v= 1–0) rovibrational transitions with IRTF/iSHELL. We report rotational temperatures, coma kinematics, and production rates for CO and stringent (3σ) upper limits on abundance ratios relative to CO for CH4, C2H6, CH3OH, H2CO, CS, and OCS. Our upper limits for CS/CO and OCS/CO represent their first values in the literature for this Centaur. Upper limits for CH4, C2H6, CH3OH, and H2CO are the most stringent reported to date, and are most similar to values found in ultra CO-rich Oort cloud comet C/2016 R2 (PanSTARRS), which may have implications for how ices are preserved in cometary nuclei. We demonstrate the superb synergy of coordinated radio and near-infrared measurements, and advocate for future small-body studies that jointly leverage the capabilities of each wavelength.more » « less
-
Abstract High-resolution infrared spectra of comet C/2014 Q2 Lovejoy were acquired with NIRSPEC at the W. M. Keck Observatory on two post-perihelion dates (UT 2015 February 2 and 3). H 2 O was measured simultaneously with CO, CH 3 OH, H 2 CO, CH 4 , C 2 H 6 , C 2 H 4 , C 2 H 2 , HCN, and NH 3 on both dates, and rotational temperatures, production rates, relative abundances, H 2 O ortho-to-para ratios, and spatial distributions in the coma were determined. The first detection of C 2 H 4 in a comet from ground-based observations is reported. Abundances relative to H 2 O for all species were found to be in the typical range compared with values for other comets in the overall population to date. There is evidence of variability in rotational temperatures and production rates on timescales that are small compared with the rotational period of the comet. Spatial distributions of volatiles in the coma suggest complex outgassing behavior. CH 3 OH, HCN, C 2 H 6 , and CH 4 spatial distributions in the coma are consistent with direct release from associated ices in the nucleus and are peaked in a more sunward direction compared with co-measured dust. H 2 O spatial profiles are clearly distinct from these other four species, likely due to a sizable coma contribution from icy grain sublimation. Spatial distributions for C 2 H 2 , H 2 CO, and NH 3 suggest substantial contributions from extended coma sources, providing further evidence for distinct origins and associations for these species in comets. CO shows a different spatial distribution compared with other volatiles, consistent with jet activity from discrete nucleus ice sources.more » « less
An official website of the United States government
